skip to main content


Search for: All records

Creators/Authors contains: "Luo, Rongxin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    When galaxies move through the intracluster medium (ICM) inside galaxy clusters, the ram pressure of the ICM can strip the gas from galaxies. The stripped gas forms tails on the trailing side. These galaxies are hence dubbed ‘jellyfish galaxies’. ESO 137-001 is a quintessential jellyfish galaxy located in the nearest rich cluster, the Norma cluster. Its spectacular multiphase tail has complex morphology and kinematics both from the imprinted galaxy’s interstellar medium (ISM) and as a result of the interactions between the stripped gas and the surrounding hot plasma, mediated by radiative cooling and magnetic fields. We study the kinematics of the multiphase tail using high-resolution observations of the ionized and the molecular gas in the entire structure. We calculate the velocity structure functions in moving frames along the tail and find that turbulence driven by Kelvin–Helmholtz (KH) instability quickly overwhelms the original ISM turbulence and saturates at ∼30 kpc. There is also a hint that the far end of the tail has possibly started to inherit pre-existing large-scale ICM turbulence likely caused by structure formation. Turbulence measured by the molecular gas is generally consistent with that measured by the ionized gas in the tail but has a slightly lower amplitude. Most of the measured turbulence is below the mean free path of the hot ICM (∼11 kpc). Using warm/cool gas as a tracer of the hot ICM, we find that the isotropic viscosity of the hot plasma must be suppressed below 0.01 per cent Spitzer level.

     
    more » « less
  2. ABSTRACT

    We present the results from the HST WFC3 and ACS data on an archetypal galaxy undergoing ram pressure stripping (RPS), ESO 137-001, in the nearby cluster Abell 3627. ESO 137-001 is known to host a prominent stripped tail detected in many bands from X-rays, H α to CO. The HST data reveal significant features indicative of RPS such as asymmetric dust distribution and surface brightness as well as many blue young star complexes in the tail. We study the correlation between the blue young star complexes from HST, H ii regions from H α (MUSE), and dense molecular clouds from CO (ALMA). The correlation between the HST blue star clusters and the H ii regions is very good, while their correlation with the dense CO clumps are typically not good, presumably due in part to evolutionary effects. In comparison to the starburst99 + cloudy model, many blue regions are found to be young (<10 Myr) and the total star formation (SF) rate in the tail is 0.3–0.6 M⊙ yr−1 for sources measured with ages less than 100 Myr, about 40 per cent of the SF rate in the galaxy. We trace SF over at least 100 Myr and give a full picture of the recent SF history in the tail. We also demonstrate the importance of including nebular emissions and a nebular to stellar extinction correction factor when comparing the model to the broad-band data. Our work on ESO 137-001 demonstrates the importance of HST data for constraining the SF history in stripped tails.

     
    more » « less
  3. ABSTRACT

    Ram pressure stripping (RPS) is an important process to affect the evolution of cluster galaxies and their surrounding environment. We present a large MUSE mosaic for ESO 137-001 and its stripped tails, and study the detailed distributions and kinematics of the ionized gas and stars. The warm, ionized gas is detected to at least 87 kpc from the galaxy and splits into three tails. There is a clear velocity gradient roughly perpendicular to the stripping direction, which decreases along the tails and disappears beyond ∼45 kpc downstream. The velocity dispersion of the ionized gas increases to ∼80 km s−1 at ∼20 kpc downstream and stays flat beyond. The stars in the galaxy disc present a regular rotation motion, while the ionized gas is already disturbed by the ram pressure. Based on the observed velocity gradient, we construct the velocity model for the residual galactic rotation in the tails and discuss the origin and implication of its fading with distance. By comparing with theoretical studies, we interpreted the increased velocity dispersion as the result of the oscillations induced by the gas flows in the galaxy wake, which may imply an enhanced degree of turbulence there. We also compare the kinematic properties of the ionized gas and molecular gas from ALMA, which shows they are co-moving and kinematically mixed through the tails. Our study demonstrates the great potential of spatially resolved spectroscopy in probing the detailed kinematic properties of the stripped gas, which can provide important information for future simulations of RPS.

     
    more » « less
  4. We report the detection of CO emission in the recently discovered multiphase isolated gas cloud in the nearby galaxy cluster Abell 1367. The cloud is located about 800 kpc in projection from the center of the cluster and at a projected distance of > 80 kpc from any galaxy. It is the first and the only known isolated “intra-cluster” cloud detected in X-ray, H α , and CO emission. We found a total of about 2.2 × 10 8   M ⊙ of H 2 with the IRAM 30-m telescope in two regions, one associated with the peak of H α emission and another with the peak of X-ray emission surrounded by weak H α filaments. The velocity of the molecular gas is offset from the underlying H α emission by > 100 km s −1 in the region where the X-ray peaks. The molecular gas may account for about 10% of the total cloud’s mass, which is dominated by the hot X-ray component. The previously measured upper limit on the star formation rate in the cloud indicates that the molecular component is in a non-star-forming state, possibly due to a combination of low density of the gas and the observed level of velocity dispersion. The presence of the three gas phases associated with the cloud suggests that gas phase mixing with the surrounding intra-cluster medium is taking place. The possible origin of the orphan cloud is a late evolutionary stage of a ram pressure stripping event. In contrast, the nearby ram pressure stripped galaxy 2MASX J11443212+2006238 is in an early phase of stripping and we detected about 2.4 × 10 9   M ⊙ of H 2 in its main body. 
    more » « less
  5. ABSTRACT Galaxy clusters grow primarily through the continuous accretion of group-scale haloes. Group galaxies experience preprocessing during their journey into clusters. A star-bursting compact group, the Blue Infalling Group (BIG), is plunging into the nearby cluster A1367. Previous optical observations reveal rich tidal features in the BIG members, and a long H α trail behind. Here, we report the discovery of a projected ∼250 kpc X-ray tail behind the BIG using Chandra and XMM–Newton observations. The total hot gas mass in the tail is ∼7 × 1010 M⊙ with an X-ray bolometric luminosity of ∼3.8 × 1041 erg s−1. The temperature along the tail is ∼1 keV, but the apparent metallicity is very low, an indication of the multi-T nature of the gas. The X-ray and H α surface brightnesses in the front part of the BIG tail follow the tight correlation established from a sample of stripped tails in nearby clusters, which suggests the multiphase gas originates from the mixing of the stripped interstellar medium (ISM) with the hot intracluster medium (ICM). Because thermal conduction and hydrodynamic instabilities are significantly suppressed, the stripped ISM can be long lived and produce ICM clumps. The BIG provides us a rare laboratory to study galaxy transformation and preprocessing. 
    more » « less
  6. ABSTRACT

    Ram pressure stripping (RPS) is an important mechanism for galaxy evolution. In this work, we present results from HST and APEX observations of one RPS galaxy, ESO 137-002 in the closest rich cluster Abell 3627. The galaxy is known to host prominent X-ray and H α tails. The HST data reveal significant features indicative of RPS in the galaxy, including asymmetric distribution of dust in the galaxy, dust filaments, and dust clouds in ablation generally aligned with the direction of ram pressure, and young star clusters immediately upstream of the residual dust clouds that suggest star formation (SF) triggered by RPS. The distribution of the molecular gas is asymmetric in the galaxy, with no CO upstream and abundant CO downstream and in the inner tail region. A total amount of ∼5.5 × 109 M⊙ of molecular gas is detected in the galaxy and its tail. On the other hand, we do not detect any active SF in the X-ray and H α tails of ESO 137-002 with the HST data and place a limit on the SF efficiency in the tail. Hence, if selected by SF behind the galaxy in the optical or UV (e.g. surveys like GASP or using the Galex data), ESO 137-002 will not be considered a ‘jellyfish’ galaxy. Thus, galaxies like ESO 137-002 are important for our comprehensive understanding of RPS galaxies and the evolution of the stripped material. ESO 137-002 also presents a great example of an edge-on galaxy experiencing a nearly edge-on RPS wind.

     
    more » « less
  7. null (Ed.)
    ABSTRACT Recent studies have highlighted the potential significance of intracluster medium (ICM) clumping and its important implications for cluster cosmology and baryon physics. Many of the ICM clumps can originate from infalling galaxies, as stripped interstellar medium (ISM) mixing into the hot ICM. However, a direct connection between ICM clumping and stripped ISM has not been unambiguously established before. Here, we present the discovery of the first and still the only known isolated cloud (or orphan cloud [OC]) detected in both X-rays and H α in the nearby cluster A1367. With an effective radius of 30 kpc, this cloud has an average X-ray temperature of 1.6 keV, a bolometric X-ray luminosity of ∼3.1 × 1041 erg s−1, and a hot gas mass of ∼1010 M⊙. From the Multi-Unit Spectroscopic Explorer (MUSE) data, the OC shows an interesting velocity gradient nearly along the east-west direction with a low level of velocity dispersion of ∼80 km s−1, which may suggest a low level of the ICM turbulence. The emission line diagnostics suggest little star formation in the main H α cloud and a low-ionization (nuclear) emission-line regions like spectrum, but the excitation mechanisms remain unclear. This example shows that stripped ISM, even long after the initial removal from the galaxy, can still induce ICM inhomogeneities. We suggest that the magnetic field can stabilize the OC by suppressing hydrodynamic instabilities and thermal conduction. This example also suggests that at least some ICM clumps are multiphase in nature and implies that the ICM clumps can also be traced in H α. Thus, future deep and wide-field H α surveys can be used to probe the ICM clumping and turbulence. 
    more » « less